Philips Saturn 563 AM Radio

1. More properties of the Fourier transform
2. Parseval’s identity
3. LTI systems and the transfer function
4. Modulation
5. Sampling
Theorem

Let \(x(t) \) and \(y(t) \) be piecewise continuous, absolutely integrable and bounded signals, with Fourier transforms \(X(\omega) \) and \(Y(\omega) \) respectively. Then the \(\mathcal{F}\{x \ast y\} \) exists and

\[
\mathcal{F}\{x \ast y\} = X(\omega) Y(\omega).
\]
Convolution in the time domain

Example

Find the Fourier transform of the triangle function

\[x(t) = \begin{cases}
 a + t & \text{if } -a < t < 0, \\
 a - t & \text{if } 0 < t < a, \\
 0 & \text{otherwise.}
\end{cases} \]
Convolution in the time domain

Example

Find the Fourier transform of the triangle function

\[x(t) = \begin{cases}
 a + t & \text{if } -a < t < 0, \\
 a - t & \text{if } 0 < t < a, \\
 0 & \text{otherwise.}
\end{cases} \]

- See exercise 2.3(b): the triangle function is a convolution:

\[x(t) = \text{rect}(t/a) \ast \text{rect}(t/a). \]
Example

Find the Fourier transform of the triangle function

\[x(t) = \begin{cases}
 a + t & \text{if } -a < t < 0, \\
 a - t & \text{if } 0 < t < a, \\
 0 & \text{otherwise.}
\end{cases} \]

See exercise 2.3(b): the triangle function is a convolution:

\[x(t) = \text{rect}(t/a) \ast \text{rect}(t/a). \]

\[\text{rect}(t/a) \leftrightarrow a \cdot \text{Sa} \left(\frac{a\omega}{2} \right) \]
Convolution in the time domain

Example

Find the Fourier transform of the triangle function

\[x(t) = \begin{cases}
 a + t & \text{if } -a < t < 0, \\
 a - t & \text{if } 0 < t < a, \\
 0 & \text{otherwise}.
\end{cases} \]

- See exercise 2.3(b): the triangle function is a convolution:
 \[x(t) = \text{rect}(t/a) \ast \text{rect}(t/a). \]

- \[\text{rect}(t/a) \leftrightarrow a \mathcal{S}a \left(\frac{a\omega}{2} \right) \]

- \[x(t) \leftrightarrow a^2 \mathcal{S}a^2 \left(\frac{a\omega}{2} \right) = \frac{4}{\omega^2} \sin^2 \left(\frac{a\omega}{2} \right) = \frac{2 - 2 \cos(a\omega)}{\omega^2}. \]
For an LTI system the response is completely determined by the impulse response h. If the input is $x(t)$ then

$$y(t) = (x * h)(t)$$
For an LTI system the response is completely determined by the impulse response h. If the input is $x(t)$ then

$$y(t) = (x * h)(t)$$

Define the **transfer function** $H(\omega) = \mathcal{F}\{h(t)\}$, then

$$Y(\omega) = X(\omega)H(\omega)$$
For an LTI system the response is completely determined by the impulse response h. If the input is $x(t)$ then

$$y(t) = (x * h)(t)$$

- Define the transfer function $H(\omega) = \mathcal{F}\{h(t)\}$, then

$$Y(\omega) = X(\omega)H(\omega)$$

- Example: consider the integrator $x(t) \mapsto \int_{-\infty}^{t} x(\tau) \, d\tau$ with impulse response $u(t)$, then

$$Y(\omega) = X(\omega)U(\omega)$$

$$= X(\omega) \left(\pi \delta(\omega) + \frac{1}{i\omega} \right)$$

$$= \pi X(0)\delta(\omega) + \frac{X(\omega)}{i\omega}.$$

\text{eq. 4.3.11}
Theorem

Let \(x(t) \) be a piecewise smooth signal with Fourier transform \(X(\omega) \) and assume that \(\lim_{t \to \infty} x(t) = 0 \) and \(\lim_{t \to -\infty} x(t) = 0 \).

Then \(\mathcal{F}\{x'(t)\} \) exists and

\[
\mathcal{F}\{x'(t)\} = i\omega X(\omega).
\]
Theorem

Let \(x(t) \) be a piecewise smooth signal with Fourier transform \(X(\omega) \) and assume that \(\lim_{t \to \infty} x(t) = 0 \) and \(\lim_{t \to -\infty} x(t) = 0 \).

Then \(\mathcal{F}\{x'(t)\} \) exists and

\[
\mathcal{F}\{x'(t)\} = i\omega X(\omega).
\]

Use integration by parts to prove the theorem:

\[
\int_{M}^{L} x'(t)e^{-i\omega t} \, dt = \int_{M}^{L} e^{-i\omega t} \, dx(t)
\]

\[
= x(t)e^{-i\omega t} \bigg|_{M}^{L} - \int_{M}^{L} x(t) \, d e^{-i\omega t}
\]

\[
= x(L)e^{-i\omega L} - x(M)e^{-i\omega M} + i\omega \int_{M}^{L} x(t)e^{-i\omega t} \, dt.
\]
Theorem

Let $x(t)$ be a piecewise smooth signal with Fourier transform $X(\omega)$ and assume that $\lim_{t \to \infty} x(t) = 0$ and $\lim_{t \to -\infty} x(t) = 0$.

Then $\mathcal{F}\{x'(t)\}$ exists and

$$
\mathcal{F}\{x'(t)\} = i\omega X(\omega).
$$

Use integration by parts to prove the theorem:

$$
\int_{L}^{M} x'(t)e^{-i\omega t} \, dt = \int_{L}^{M} e^{-i\omega t} \, dx(t)
$$

$$
= x(t)e^{-i\omega t} \bigg|_{L}^{M} - \int_{M}^{L} x(t) \, d e^{-i\omega t}
$$

$$
= x(L)e^{-i\omega L} - x(M)e^{-i\omega M} + i\omega \int_{M}^{L} x(t)e^{-i\omega t} \, dt.
$$

Now take limits $M \to -\infty$ and $L \to \infty$.
Differentiation in the time domain

Example

*Find the Fourier transform of $x'(t)$ with $x(t) = e^{-\alpha t} u(t)$, $\alpha > 0$.***

- Use the product rule to differentiate $x(t)$:

 $$x(t)' = e^{-\alpha t} \delta(t) - \alpha e^{-\alpha t} u(t)$$

 $$= e^{-\alpha \cdot 0} \delta(t) - \alpha x(t)$$

 $$= \delta(t) - \alpha x(t).$$
Differentiation in the time domain

Example

Find the Fourier transform of \(x'(t) \) with \(x(t) = e^{-\alpha t} u(t), \ \alpha > 0 \).

- Use the product rule to differentiate \(x(t) \):
 \[
 x(t)' = e^{-\alpha t} \delta(t) - \alpha e^{-\alpha t} u(t)
 \]
 \[
 = e^{-\alpha \cdot 0} \delta(t) - \alpha x(t)
 \]
 \[
 = \delta(t) - \alpha x(t).
 \]

- The Fourier transform of the right-hand side is
 \[
 \mathcal{F} \{ \delta(t) - \alpha x(t) \} = 1 - \alpha X(\omega) = 1 - \frac{\alpha}{\alpha + i\omega}
 \]
 \[
 = \frac{(\alpha + i\omega) - \alpha}{\alpha + i\omega} = i\omega \frac{1}{\alpha + i\omega}
 \]
 \[
 = i\omega X(\omega).
 \]
Be careful

Let $U(\omega)$ be the Fourier transform of the step function $u(t)$, then using the differentiation theorem yields

$$i\omega U(\omega) = i\omega \mathcal{F}\{u(t)\} = \mathcal{F}\{u'(t)\} = \mathcal{F}\{\delta(t)\} = 1.$$

This suggests $U(\omega) = \frac{1}{i\omega}$, but this is wrong!
The unit step-function

⚠️ **Be careful**

Let $U(\omega)$ be the Fourier transform of the step function $u(t)$, then using the differentiation theorem yields

$$i\omega U(\omega) = i\omega \mathcal{F}\{u(t)\} = \mathcal{F}\{u'(t)\} = \mathcal{F}\{\delta(t)\} = 1.$$

This suggests $U(\omega) = \frac{1}{i\omega}$, but this is wrong!

- Notice that $\lim_{t \to \infty} u(t) \neq 0$: the step function does not satisfy the requirements of the differentiation theorem.
The unit step-function

⚠️ Be careful

Let \(U(\omega) \) be the Fourier transform of the step function \(u(t) \), then using the differentiation theorem yields

\[
i\omega \ U(\omega) = i\omega F\{u(t)\} = F\{u'(t)\} = F\{\delta(t)\} = 1.
\]

This suggests \(U(\omega) = \frac{1}{i\omega} \), but this is wrong!

- Notice that \(\lim_{t \to \infty} u(t) \neq 0 \): the step function does not satisfy the requirements of the differentiation theorem.
- Also, \(\frac{1}{i\omega} \) is not defined for \(\omega = 0 \).
Be careful

Let \(U(\omega) \) be the Fourier transform of the step function \(u(t) \), then using the differentiation theorem yields

\[
i\omega U(\omega) = i\omega \mathcal{F}\{u(t)\} = \mathcal{F}\{u'(t)\} = \mathcal{F}\{\delta(t)\} = 1.
\]

This suggests \(U(\omega) = \frac{1}{i\omega} \), but this is wrong!

- Notice that \(\lim_{t \to \infty} u(t) \neq 0 \): the step function does not satisfy the requirements of the differentiation theorem.
- Also, \(\frac{1}{i\omega} \) is not defined for \(\omega = 0 \).

Definition

The Cauchy Principal Value of \(1/x \) is defined as

\[
\text{CPV} \frac{1}{x} = \begin{cases}
\frac{1}{x} & \text{if } x \neq 0, \\
0 & \text{if } x = 0.
\end{cases}
\]
The unit step-function

Write

\[U(\omega) = U(0) + \text{CPV} \frac{1}{i\omega}. \]
The unit step-function

- Write

\[U(\omega) = U(0) + \text{CPV} \frac{1}{i\omega}. \]

- Observe that \(u(t) + u(-t) = 1 \), hence

\[
2\pi\delta(\omega) = \mathcal{F}\{1\} = \mathcal{F}\{u(t)\} + \mathcal{F}\{u(-t)\} \\
= U(\omega) + U(-\omega) \\
= U(0) + \text{CPV} \frac{1}{i\omega} + U(0) - \text{CPV} \frac{1}{i\omega} \\
= 2U(0).
\]
The unit step-function

- Write

\[U(\omega) = U(0) + \text{CPV} \frac{1}{i\omega}. \]

- Observe that \(u(t) + u(-t) = 1 \), hence

\[
2\pi\delta(\omega) = \mathcal{F}\{1\} = \mathcal{F}\{u(t)\} + \mathcal{F}\{u(-t)\} = U(\omega) + U(-\omega) = U(0) + \text{CPV} \frac{1}{i\omega} + U(0) - \text{CPV} \frac{1}{i\omega} = 2U(0).
\]

- Hence \(U(0) = \pi\delta(\omega) \), and consequently

\[
u(t) \leftrightarrow \pi\delta(\omega) + \text{CPV} \frac{1}{i\omega} \quad \text{Eq. 4.3.13}
\]
Integration in the time domain

Theorem

Let \(x(t) \) be a piecewise continuous, integrable signal on \(\mathbb{R} \) with Fourier transform \(X(\omega) \). If \(X(0) = 0 \) then

\[
\mathcal{F} \left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \frac{1}{i\omega} X(\omega).
\]
Integration in the time domain

Theorem

Let $x(t)$ be a piecewise continuous, integrable signal on \mathbb{R} with Fourier transform $X(\omega)$. If $X(0) = 0$ then

$$
\mathcal{F} \left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \frac{1}{i\omega} X(\omega).
$$

Note that

$$
\int_{-\infty}^{\infty} x(\tau) \, d\tau = \int_{-\infty}^{\infty} x(\tau) e^{-i\cdot0\cdot t} \, d\tau = X(0).
$$
Integration in the time domain

Theorem

Let \(x(t) \) be a piecewise continuous, integrable signal on \(\mathbb{R} \) with Fourier transform \(X(\omega) \). If \(X(0) = 0 \) then

\[
\mathcal{F} \left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \frac{1}{i\omega} X(\omega).
\]

- Note that \(\int_{-\infty}^{\infty} x(\tau) \, d\tau = \int_{-\infty}^{\infty} x(\tau)e^{-i\cdot0\cdot t} \, d\tau = X(0) \).
- Define \(y(t) = \int_{-\infty}^{t} x(\tau) \, d\tau \), then \(y(t) \) is piecewise smooth and \(\lim_{t \to \infty} y(t) = X(0) = 0 \).
Integration in the time domain

Theorem

Let \(x(t) \) be a piecewise continuous, integrable signal on \(\mathbb{R} \) with Fourier transform \(X(\omega) \). If \(X(0) = 0 \) then

\[
\mathcal{F} \left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \frac{1}{i\omega} X(\omega).
\]

- Note that \(\int_{-\infty}^{\infty} x(\tau) \, d\tau = \int_{-\infty}^{\infty} x(\tau) e^{-i\cdot0\cdot t} \, d\tau = X(0) \).
- Define \(y(t) = \int_{-\infty}^{t} x(\tau) \, d\tau \), then \(y(t) \) is piecewise smooth and \(\lim_{t \to \infty} y(t) = X(0) = 0 \).
- Since \(y'(t) = x(t) \) we have \(X(\omega) = i\omega \, Y(\omega) \), and then

\[
\mathcal{F} \left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \mathcal{F} \{ y(t) \} \]

\[
= Y(\omega) = \frac{1}{i\omega} X(\omega).
\]
Integration in the time domain

Theorem

Let \(x(t) \) be a piecewise continuous, integrable signal on \(\mathbb{R} \) with Fourier transform \(X(\omega) \). Then

\[
\mathcal{F} \left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \pi X(0) \delta(\omega) + \frac{1}{i\omega} X(\omega).
\]

See also example 4.3.10.
Integration in the time domain

Theorem

Let $x(t)$ be a piecewise continuous, integrable signal on \mathbb{R} with Fourier transform $X(\omega)$. Then

$$
\mathcal{F}\left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \pi X(0) \delta(\omega) + \frac{1}{i\omega} X(\omega).
$$

- Note that $\int_{-\infty}^{t} x(\tau) \, d\tau = (x * u)(t)$.

See also example 4.3.10.
Integration in the time domain

Theorem

Let \(x(t) \) be a piecewise continuous, integrable signal on \(\mathbb{R} \) with Fourier transform \(X(\omega) \). Then

\[
\mathcal{F} \left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = \pi X(0) \delta(\omega) + \frac{1}{i\omega} X(\omega).
\]

- Note that \(\int_{-\infty}^{t} x(\tau) \, d\tau = (x \ast u)(t) \).
- Hence

\[
\mathcal{F} \left\{ \int_{-\infty}^{t} x(\tau) \, d\tau \right\} = X(\omega) \ U(\omega)
\]

\[
= X(\omega) \left[\pi \delta(\omega) + \frac{1}{i\omega} \right]
\]

\[
= \pi X(0) \delta(\omega) + \frac{1}{i\omega} X(\omega).
\]

- See also example 4.3.10.
Parseval’s identity

Theorem

Let \(x(t) \) and \(y(t) \) be piecewise smooth signals with Fourier transforms \(X(\omega) \) and \(Y(\omega) \) respectively, then

\[
\int_{-\infty}^{\infty} x(t) y(t) \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) Y(\omega) \, d\omega
\]

Corollary

Let \(x(t) \) be a piecewise smooth signal with Fourier transforms \(X(\omega) \), then

\[
\int_{-\infty}^{\infty} |x(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 \, d\omega
\]

(eq. 4.3.14)
Parseval’s identity

\[\int_{-\infty}^{\infty} X(\omega)Y(\omega) \, d\omega = \int_{-\infty}^{\infty} X(\omega) \int_{-\infty}^{\infty} y(t)e^{-i\omega t} \, dt \, d\omega \]

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(\omega)y(t)e^{i\omega t} \, dt \, d\omega \]

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(\omega)e^{i\omega t} y(t) \, d\omega \, dt \]

\[= \int_{-\infty}^{\infty} y(t) \int_{-\infty}^{\infty} X(\omega)e^{i\omega t} \, d\omega \, dt \]

\[= \int_{-\infty}^{\infty} y(t) \cdot 2\pi x(t) \, dt \]

\[= 2\pi \int_{-\infty}^{\infty} x(t)\overline{y(t)} \, dt \]
Frequency bands

Definition

- A **frequency band** is an interval in the frequency domain.
- The length of the interval is called the **bandwidth**.
Frequency bands

Definition

- A frequency band is an interval in the frequency domain.
- The length of the interval is called the bandwidth.

Definition

A energy of $x(t)$ in frequency band B is defined as

$$\frac{1}{2\pi} \int_B |X(\omega)|^2 \, d\omega.$$
Frequency bands

Definition

- A frequency band is an interval in the frequency domain.
- The length of the interval is called the bandwidth.

Definition

A energy of $x(t)$ in frequency band B is defined as

$$\frac{1}{2\pi} \int_B |X(\omega)|^2 \, d\omega.$$

Example: let $\omega_0 > 0$, then the energy of $x(t)$ contained within the band $|\omega| < \omega_0$ is

$$\Delta E = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} |X(\omega)|^2 \, d\omega.$$
Frequency bands

Definition

- **A frequency band** is an interval in the frequency domain.
- The length of the interval is called the **bandwidth**.

Definition

* A energy of $x(t)$ in frequency band B is defined as

$$\frac{1}{2\pi} \int_B |X(\omega)|^2 \, d\omega.$$

- Example: let $\omega_0 > 0$, then the energy of $x(t)$ contained within the band $|\omega| < \omega_0$ is

$$\Delta E = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} |X(\omega)|^2 \, d\omega.$$

- If $x(t)$ is real, then $|X(-\omega)| = |X(\omega)| = |X(\omega)|$, hence

$$\Delta E = \frac{1}{\pi} \int_0^{\omega_0} |X(\omega)|^2 \, d\omega.$$
Frequency bands

Example

Let \(x(t) = e^{-t}u(t) \). Find the total energy \(E \) of \(x(t) \) and find the energy \(\Delta E \) in the band \(|\omega| < 4 \).

\[
E = \frac{1}{\pi} \int_0^\infty |X(\omega)|^2 d\omega = \frac{1}{\pi} \int_0^\infty \left(\frac{1}{1+\omega^2} \right)^2 d\omega = \frac{1}{\pi} \arctan(\omega) \bigg|_0^\infty = \frac{1}{\pi} \left(\frac{\pi}{2} - 0 \right) = \frac{1}{2}.
\]

A similar calculation shows
\[
\Delta E = \frac{1}{\pi} \int_4^\infty |X(\omega)|^2 d\omega = \frac{1}{\pi} \int_4^\infty \left(\frac{1}{1+\omega^2} \right)^2 d\omega = \frac{1}{\pi} \arctan(4) \approx 0.422021.
\]

Hence the fraction of energy in the band \(|\omega| < 4 \) is \(\frac{\Delta E}{E} \approx 84.4\% \).
Frequency bands

Example

Let $x(t) = e^{-t}u(t)$. Find the total energy E of $x(t)$ and find the energy ΔE in the band $|\omega| < 4$.

See example 4.2.3: $X(\omega) = \frac{1}{1 + i\omega}$.
Example 4.3.6

Let \(x(t) = e^{-t}u(t) \). Find the total energy \(E \) of \(x(t) \) and find the energy \(\Delta E \) in the band \(|\omega| < 4 \).

See example 4.2.3: \(X(\omega) = \frac{1}{1 + i\omega} \).

\[
E = \frac{1}{\pi} \int_0^\infty |X(\omega)|^2 \, d\omega = \frac{1}{\pi} \int_0^\infty \frac{1}{1 + \omega^2} \, d\omega = \frac{1}{\pi} \left[\arctan(\omega) \right]_0^\infty = \frac{1}{\pi} \left(\frac{\pi}{2} - 0 \right) = .5
\]
Frequency bands

Example

Let $x(t) = e^{-t}u(t)$. Find the total energy E of $x(t)$ and find the energy ΔE in the band $|\omega| < 4$.

- See example 4.2.3: $X(\omega) = \frac{1}{1 + i\omega}$.

\[
E = \frac{1}{\pi} \int_{0}^{\infty} |X(\omega)|^2 \, d\omega = \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{1 + \omega^2} \, d\omega = \frac{1}{\pi} \arctan(\omega) \bigg|_{0}^{\infty} = \frac{1}{\pi} \left(\frac{\pi}{2} - 0 \right) = .5
\]

- A similar calculation shows

\[
\Delta E = \frac{1}{\pi} \int_{0}^{4} |X(\omega)|^2 \, d\omega = \frac{1}{\pi} \arctan(4) \approx 0.422021
\]
Example 4.3.6

Let \(x(t) = e^{-t}u(t) \). Find the total energy \(E \) of \(x(t) \) and find the energy \(\Delta E \) in the band \(|\omega| < 4\).

\[
E = \frac{1}{\pi} \int_{0}^{\infty} |X(\omega)|^2 \, d\omega = \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{1 + \omega^2} \, d\omega
\]

\[
= \frac{1}{\pi} \arctan(\omega) \bigg|_{0}^{\infty} = \frac{1}{\pi} \left(\frac{\pi}{2} - 0 \right) = .5
\]

A similar calculation shows

\[
\Delta E = \frac{1}{\pi} \int_{0}^{4} |X(\omega)|^2 \, d\omega = \frac{1}{\pi} \arctan(4) \approx 0.422021
\]

Hence the fraction of energy in the band \(|\omega| < 4\) is

\[
\frac{\Delta E}{E} \times 100 \approx 84.4\%.
\]
Theorem – Modulation property

Let $x(t)$ and $y(t)$ be piecewise smooth, absolutely integrable and with finite energy. Assume that the Fourier transforms are $X(\omega)$ and $Y(\omega)$ respectively. Then the $\mathcal{F}\{x(t) \cdot y(t)\}$ exists and

$$\mathcal{F}\{x(t) \cdot y(t)\} = \frac{1}{2\pi} X(\omega) * Y(\omega)$$

Equation 4.3.24
Theorem – Modulation property

Let $x(t)$ and $y(t)$ be piecewise smooth, absolutely integrable and with finite energy. Assume that the Fourier transforms are $X(\omega)$ and $Y(\omega)$ respectively. Then the $\mathcal{F}\{x(t) y(t)\}$ exists and

$$
\mathcal{F}\{x(t) y(t)\} = \frac{1}{2\pi} X(\omega) \ast Y(\omega)
$$

Equation 4.3.24

The output of a multiplier is the product of the input signals which transform to a (scaled) convolution in the frequency domain.
Shift in the frequency domain

Multiply input $x(t)$ with a time-harmonic signal $e^{i\omega_0 t}$.

$$x(t) \rightarrow x(t)e^{i\omega_0 t}$$
Shift in the frequency domain

Multiply input \(x(t)\) with a time-harmonic signal \(e^{i\omega_0 t}\).

The Fourier transform of the output is

\[
\frac{1}{2\pi} X(\omega) \ast (2\pi \delta(\omega - \omega_0)) = X(\omega) \ast \delta(\omega - \omega_0)
\]

\[
= \int_{-\infty}^{\infty} X(\sigma) \delta((\omega - \sigma) - \omega_0) \, d\sigma = X(\omega - \omega_0).
\]
Shift in the frequency domain

Multiply input $x(t)$ with a time-harmonic signal $e^{i\omega_0 t}$.

The Fourier transform of the output is

$$\frac{1}{2\pi} X(\omega) \ast (2\pi \delta(\omega - \omega_0)) = X(\omega) \ast \delta(\omega - \omega_0)$$

$$= \int_{-\infty}^{\infty} X(\sigma)\delta((\omega - \sigma) - \omega_0) \, d\sigma = X(\omega - \omega_0).$$

Theorem

Let $x(t)$ be a signal with Fourier transform $X(\omega)$, then

$$x(t) e^{i\omega_0 t} \leftrightarrow X(\omega - \omega_0)$$

Eq. 4.3.6b
Definition

Modulation is *the process of superimposing a signal to a carrier signal.*
Modulation is the process of superimposing a signal to a carrier signal.

- Data signal
- Carrier signal
- Amplitude modulation
- Frequency modulation
In **amplitude modulation** a data signal \(x(t) \) is multiplied with a carrier signal \(m(t) = \cos \omega_0 t \).

\[
x(t) \rightarrow \times \rightarrow y(t) \quad m(t) = \cos \omega_0 t
\]
Amplitude modulation

In **amplitude modulation** a data signal $x(t)$ is multiplied with a carrier signal $m(t) = \cos \omega_0 t$.

The modulated signal $y(t) = x(t)m(t)$ has Fourier transform

\[
Y(\omega) = \frac{1}{2\pi} X(\omega) \ast \pi \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right) \\
= \frac{1}{2} X(\omega - \omega_0) + \frac{1}{2} X(\omega + \omega_0).
\]
Demodulation

Demodulate signal \(y(t) \) by multiplying it with the carrier signal \textit{again}. If \(z(t) = y(t)m(t) \) then:

\[
Z(\omega) = \frac{1}{2}Y(\omega - \omega_0) + \frac{1}{2}Y(\omega + \omega_0) = \frac{1}{4}X(\omega - 2\omega_0) + \frac{1}{2}X(\omega) + \frac{1}{4}X(\omega + 2\omega_0).
\]
Demodulation

- Demodulate signal $y(t)$ by multiplying it with the carrier signal again. If $z(t) = y(t)m(t)$ then:
 \[Z(\omega) = \frac{1}{2} Y(\omega - \omega_0) + \frac{1}{2} Y(\omega + \omega_0) \]
 \[= \frac{1}{4} X(\omega - 2\omega_0) + \frac{1}{2} X(\omega) + \frac{1}{4} X(\omega + 2\omega_0). \]

- Observe that
 \[\cos^2 \omega_0 t = \frac{1}{2} + \frac{1}{2} \cos(2\omega_0 t) \]
 \[\leftrightarrow \frac{1}{2} \delta(\omega) + \frac{1}{4} \delta(\omega - 2\omega_0) + \frac{1}{4} \delta(\omega + 2\omega_0). \]
Demodulation

- Demodulate signal \(y(t) \) by multiplying it with the carrier signal \textit{again}. If \(z(t) = y(t)m(t) \) then:

\[
Z(\omega) = \frac{1}{2} Y(\omega - \omega_0) + \frac{1}{2} Y(\omega + \omega_0)
= \frac{1}{4} X(\omega - 2\omega_0) + \frac{1}{2} X(\omega) + \frac{1}{4} X(\omega + 2\omega_0).
\]

- Observe that

\[
\cos^2 \omega_0 t = \frac{1}{2} + \frac{1}{2} \cos(2\omega_0 t)
\leftrightarrow \frac{1}{2} \delta(\omega) + \frac{1}{4} \delta(\omega - 2\omega_0) + \frac{1}{4} \delta(\omega + 2\omega_0).
\]

- The original signal can be retrieved by processing \(z(t) \) through a low pass filter.

\[
y(t) \xrightarrow{\times} z(t) \xrightarrow{\text{low pass filter}} \frac{1}{2} x(t)
\]

\[
m(t) = \cos \omega_0 t
\]
The Dirac comb

Definition

- **The Dirac comb** with period T is is a pulse train consisting of Dirac pulses, and is defined as

$$\mathbb{III}_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT).$$

- **The Dirac comb** with period 1 is denoted as $\mathbb{III}(t)$.
The Dirac comb

Definition

- The **Dirac comb** with period T is is a pulse train consisting of Dirac pulses, and is defined as

$$\mathcal{X}_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT).$$

- The Dirac comb with period 1 is denoted as $\mathcal{X}(t)$.

- The symbol \mathcal{X} is the Cyrillic character “Sha”.

- The Dirac comb is therefore sometimes called the *Shah function*.
The Dirac comb

- The Dirac comb is periodic with period T and (with $\omega_0 = 2\pi / T$) has Fourier coefficients

\[
c_n = \frac{1}{T} \int_{-T/2}^{T/2} \mathcal{H}_T(t) e^{-i\omega_0 n t} \, dt \\
= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-i\omega_0 n t} \, dt = \frac{1}{T} e^{-i\omega_0 n \cdot 0} = \frac{1}{T}.
\]
The Dirac comb

- The Dirac comb is periodic with period T and (with $\omega_0 = 2\pi / T$) has Fourier coefficients

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} \mathcal{F}_T(t) e^{-i\omega_0 nt} \, dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-i\omega_0 nt} \, dt = \frac{1}{T} e^{-i\omega_0 n \cdot 0} = \frac{1}{T}.$$

- The Dirac comb has Fourier series expansion

$$\mathcal{F}_T(t) = \sum_{n=-\infty}^{\infty} \frac{1}{T} e^{in\omega_0 t}.$$
The Dirac comb

- The Dirac comb is periodic with period T and (with $\omega_0 = 2\pi / T$) has Fourier coefficients

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} \Pi_T(t) e^{-i\omega_0 nt} \, dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-i\omega_0 nt} \, dt = \frac{1}{T} e^{-i\omega_0 n \cdot 0} = \frac{1}{T}.$$

- The Dirac comb has Fourier series expansion

$$\Pi_T(t) = \sum_{n=-\infty}^{\infty} \frac{1}{T} e^{in\omega_0 t}.$$

- The Dirac comb has Fourier transform

$$\Pi_T(t) \leftrightarrow \omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$$

$$= \sum_{n=-\infty}^{\infty} \delta(\omega/\omega_0 - n) = \Pi(\omega/\omega_0).$$

- The Fourier transform of a Dirac comb is a Dirac comb
The Dirac comb

- Observe that \(\mathcal{D}_T(t) \) does not satisfy the conditions of the Fundamental Theorem of Fourier Series.

Question

Why is \(\sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} \frac{1}{T} e^{j\omega_0 t} ? \) \((*)\)
The Dirac comb

- Observe that $\mathcal{I}_T(t)$ does not satisfy the conditions of the Fundamental Theorem of Fourier Series.

Question

Why is $\sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} \frac{1}{T} e^{in\omega_0 t}$? \((*) \)

- Let $T = 1$, then equation \((*) \) boils down to
 \[
 \sum_{n=-\infty}^{\infty} \delta(t - n) = \sum_{n=-\infty}^{\infty} e^{2\pi int}.
 \]
The Dirac comb

- Observe that $\sum_{n=-\infty}^{\infty} \delta(t - nT)$ does not satisfy the conditions of the Fundamental Theorem of Fourier Series.

Question

Why is $\sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} \frac{1}{T} e^{i n \omega_0 t}$?

Let $T = 1$, then equation (\text{*}) boils down to

$$\sum_{n=-\infty}^{\infty} \delta(t - n) = \sum_{n=-\infty}^{\infty} e^{2\pi i n t}.$$

- If $t = k \in \mathbb{Z}$: $\sum_{n=-\infty}^{\infty} \delta(k - n) = \infty$ and $\sum_{n=-\infty}^{\infty} e^{2\pi i nk} = \infty$.

The Dirac comb

- Observe that \(\text{III}_T(t) \) does not satisfy the conditions of the Fundamental Theorem of Fourier Series.

Question

Why is \(\sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} \frac{1}{T} e^{in\omega_0 t} \)? (*)

- Let \(T = 1 \), then equation (*) boils down to
 \[
 \sum_{n=-\infty}^{\infty} \delta(t - n) = \sum_{n=-\infty}^{\infty} e^{2\pi i nt}.
 \]

- If \(t = k \in \mathbb{Z} \): \(\sum_{n=-\infty}^{\infty} \delta(k - n) = \infty \) and \(\sum_{n=-\infty}^{\infty} e^{2\pi i nk} = \infty \).

- If \(t \not\in \mathbb{Z} \), then \(\sum_{n=-\infty}^{\infty} \delta(t - n) = 0 \), but why
 \[
 \sum_{n=-\infty}^{\infty} e^{2\pi i nt} = 0 ?
 \]
The Dirac comb

\[\sum_{n=-\infty}^{\infty} e^{2\pi i t n} = 0, \quad t \notin \mathbb{Z}. \]

Equation (**) can only be understood with \textit{distributions}.
The Dirac comb

\[\sum_{n=-\infty}^{\infty} e^{2\pi int} = 0, \quad t \notin \mathbb{Z}. \]

Equation (**) can only be understood with distributions.

Define \(\zeta = e^{2\pi it} \), then \(|\zeta| = 1 \), \(\zeta \neq 1 \), and (**) becomes

\[\sum_{n=-\infty}^{\infty} \zeta^n = 0. \]
The Dirac comb

\[\sum_{n=-\infty}^{\infty} e^{2\pi i nt} = 0, \quad t \not\in \mathbb{Z}. \] (**)

Equation (**) can only be understood with distributions.

Define \(\zeta = e^{2\pi i t} \), then \(|\zeta| = 1\), \(\zeta \neq 1 \), and (**) becomes

\[\sum_{n=-\infty}^{\infty} \zeta^n = 0. \]

If \(t \) is rational, then \(\zeta \) has finite order: \(\zeta^N = 1 \) for \(N > 0 \).

\[\sum_{n=-\infty}^{\infty} \zeta^n = \cdots + 1 + \zeta + \zeta^2 + \cdots + \zeta^{N-1} + \cdots \]
\[= \cdots + \frac{\zeta^N - 1}{\zeta - 1} + \cdots = \cdots + 0 + \cdots. \]
The Dirac comb

\[\sum_{n=-\infty}^{\infty} e^{2\pi int} = 0, \quad t \notin \mathbb{Z}. \]

Equation (**) can only be understood with *distributions*.

Define \(\zeta = e^{2\pi it} \), then \(|\zeta| = 1 \), \(\zeta \neq 1 \), and (***) becomes

\[\sum_{n=-\infty}^{\infty} \zeta^n = 0. \]

If \(t \) is rational, then \(\zeta \) has finite order: \(\zeta^N = 1 \) for \(N > 0 \).

\[\sum_{n=-\infty}^{\infty} \zeta^n = \cdots + 1 + \zeta + \zeta^2 + \cdots + \zeta^{N-1} + \cdots \]

\[= \cdots + \frac{\zeta^N - 1}{\zeta - 1} + \cdots = \cdots + 0 + \cdots. \]

If \(t \) is irrational, then all powers \(\zeta^n \) fill the unit circle, hence

\[\sum_{n=-\infty}^{\infty} \zeta^n \approx \int_{0}^{2\pi} e^{i\tau} \, d\tau = \frac{1}{i} \left(e^{2\pi i} - 1 \right) = 0. \]
Sampling of a signal $x(t)$ is the process of obtaining values of $x(t)$ at regular time intervals.
Sampling of a signal $x(t)$ is the process of obtaining values of $x(t)$ at regular time intervals.

The sampled signal $x_s(t)$ is obtained by multiplying $x(t)$ with a Dirac comb.
Sampling of a signal $x(t)$ is the process of obtaining values of $x(t)$ at regular time intervals.

The sampled signal $x_s(t)$ is obtained by multiplying $x(t)$ with a Dirac comb.

Using the sample property of $\delta(t)$ we see

$$x_s(t) = \sum_{n=-\infty}^{\infty} x(nT) \delta(t - nT).$$
The Fourier transform of sampled signals

Example 4.3.13: the Fourier transform of $\mathcal{III}(t)$ is

$$\mathcal{III}(\omega/\omega_0) = \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0).$$
The Fourier transform of sampled signals

Example 4.3.13: the Fourier transform of $\Pi(t)$ is

$$\Pi(\omega/\omega_0) = \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0).$$

The Fourier transform of the sampled signal $x_s(t)$ is

$$\frac{1}{2\pi} X(\omega) * \Pi(\omega/\omega_0) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X(\omega) * \delta(\omega - n\omega_0)$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} X(\omega - n\omega_0).$$
The Fourier transform of sampled signals

Example 4.3.13: the Fourier transform of $III(t)$ is

$$III(\omega/\omega_0) = \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0).$$

The Fourier transform of the sampled signal $x_s(t)$ is

$$\frac{1}{2\pi} X(\omega) * III(\omega/\omega_0) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X(\omega) * \delta(\omega - n\omega_0)$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} X(\omega - n\omega_0).$$

The Fourier transform of $x_s(t)$ is obtained by adding shifted and scaled copies of $X(\omega)$.

![Graph of X(\omega) and X_s(\omega)]
The sampling theorem

If the copies of $X(\omega)$ overlap, then the transform $X(\omega)$ cannot be obtained from $X_S(\omega)$ by filtering.
The sampling theorem

If the copies of $X(\omega)$ overlap, then the transform $X(\omega)$ cannot be obtained from $X_S(\omega)$ by filtering.

This phenomenon is called **aliasing**.
The sampling theorem

If the copies of $X(\omega)$ overlap, then the transform $X(\omega)$ cannot be obtained from $X_s(\omega)$ by filtering.

This phenomenon is called **aliasing**.

If the bandwidth of $X(\omega)$ is ω_B, and $\omega_0 > 2\omega_B$, then $X(\omega)$ can be retrieved from $X_s(\omega)$ by filtering.
The sampling theorem

If the copies of $X(\omega)$ overlap, then the transform $X(\omega)$ cannot be obtained from $X_s(\omega)$ by filtering.

This phenomenon is called **aliasing**.

If the bandwidth of $X(\omega)$ is ω_B, and $\omega_0 > 2\omega_B$, then $X(\omega)$ can be retrieved from $X_s(\omega)$ by filtering.

The frequency $2\omega_B$ is called the **Nyquist frequency**.